Phenotype-based Hierarchical Clustering and Visualization of Cell Type Distributions
Source:R/PhenotypeHclust.R
PhenotypeHclust.Rd
This function performs phenotype-stratified hierarchical clustering of cell type proportions using Jensen-Shannon Divergence (JSD) as the distance metric. It then visualizes average cell type distributions across identified clusters/domains.
Usage
PhenotypeHclust(
PhenotypeMap_result,
phenotype = c("phenotype-", "phenotype+"),
coordinate,
k = 2,
size = 2
)
Arguments
- PhenotypeMap_result
A list with at least:
cell_type_distribution
: Matrix or data.frame of cell type proportions (rows = spots).pred_score
: Data.frame with phenotype labels. Row names must match the distribution matrix.
- phenotype
Character string indicating phenotype label to subset. Default is
"phenotype-"
.- coordinate
A data.frame of spatial coordinates for each spot/cell. Used for spatial plotting.
- k
Integer; number of clusters/domains to define. Default is 2.
- size
Numeric; point size used in
SpaDo::DomainPlot
. Default is 2.
Details
The function filters spots/cells by a specified phenotype label, computes pairwise JSD distances,
applies hierarchical clustering, and visualizes the mean cell type profiles of each domain.
Requires the SpaDo
package for clustering and plotting domains. devtools::install_github("bm2-lab/SpaDo").
Examples
if (FALSE) { # \dontrun{
res <- list(
cell_type_distribution = cell_type_df,
pred_score = phenotype_df
)
PhenotypeHclust(res, phenotype = "phenotype+", coordinate = coord_df, k = 3)
} # }