Multi Similarity Loss-Based Metric Learning for Single-Cell Data
Source:R/scLearn_model_learning.R
      runMSL.RdImplements a metric learning algorithm based on Multi Similarity Loss (MSL), as an alternative to Triplet Loss in LMNN. It enhances learning from limited sample pairs by considering multiple similarity cues and penalizes overfitting through L2 regularization. Optimized for single-cell expression data.
Usage
runMSL(
  high_varGenes,
  expression_profile,
  sample_information,
  alpha = 2,
  beta = 50,
  margin = 0.1,
  lambda = 1e-04,
  learn_rate = 1e-05,
  max_iter = 200,
  seed = 1,
  verbose = TRUE
)Arguments
- high_varGenes
- Character vector of highly variable gene names. 
- expression_profile
- A numeric matrix of gene expression values (genes x cells). 
- sample_information
- A named vector of cell type labels (names match column names of expression_profile). 
- alpha
- Scaling parameter for positive similarities (default: 2.0). 
- beta
- Scaling parameter for negative similarities (default: 50.0). 
- margin
- Margin threshold to filter informative pairs (default: 0.1). 
- lambda
- L2 regularization strength (default: 1e-4). 
- learn_rate
- Learning rate for gradient descent (default: 1e-5). 
- max_iter
- Maximum number of optimization iterations (default: 200). 
- seed
- Random seed (default: 1). 
- verbose
- Logical; whether to print progress information (default: TRUE).