Maximum Margin Clustering (MMC) Transformation (Memory-Optimized)
Source:R/scLearn_model_learning.R
      runMMC.RdPerforms MMC metric learning for single-cell data with reduced memory usage. Incorporates low-rank approximation and other optimizations.
Usage
runMMC(
  high_varGenes,
  expression_profile,
  sample_information,
  C = 1,
  max_iter = 50,
  seed = 1,
  verbose = TRUE,
  rank = NULL,
  batch_size = NULL
)Arguments
- high_varGenes
- Character vector of high-variance genes 
- expression_profile
- Numeric matrix (genes x cells) 
- sample_information
- Named vector of cell type labels 
- C
- Trade-off parameter (default: 1.0) 
- max_iter
- Maximum iterations (default: 50) 
- seed
- Random seed (default: 1) 
- verbose
- Print progress messages (default: TRUE) 
- rank
- Optional rank for low-rank approximation (default: NULL) 
- batch_size
- Number of cells to process at once if using batching (default: NULL)