Maximum Margin Clustering (MMC) Transformation (Memory-Optimized)
Source:R/scLearn_model_learning.R
runMMC.Rd
Performs MMC metric learning for single-cell data with reduced memory usage. Incorporates low-rank approximation and other optimizations.
Usage
runMMC(
high_varGenes,
expression_profile,
sample_information,
C = 1,
max_iter = 50,
seed = 1,
verbose = TRUE,
rank = NULL,
batch_size = NULL
)
Arguments
- high_varGenes
Character vector of high-variance genes
- expression_profile
Numeric matrix (genes x cells)
- sample_information
Named vector of cell type labels
- C
Trade-off parameter (default: 1.0)
- max_iter
Maximum iterations (default: 50)
- seed
Random seed (default: 1)
- verbose
Print progress messages (default: TRUE)
- rank
Optional rank for low-rank approximation (default: NULL)
- batch_size
Number of cells to process at once if using batching (default: NULL)