Triplet Loss-Based Metric Learning for Single-Cell Data
Source:R/scLearn_model_learning.R
      runLMNN.RdImplements a triplet loss-based linear transformation learning to map gene expression into an embedding space where cells of the same type are close and those of different types are farther apart. This is a deep metric learning alternative to LMNN.
Usage
runLMNN(
  high_varGenes,
  expression_profile,
  sample_information,
  k = 5,
  margin = 1,
  learn_rate = 1e-04,
  max_iter = 100,
  seed = 1,
  verbose = TRUE
)Arguments
- high_varGenes
- Character vector of highly variable gene names. 
- expression_profile
- A numeric matrix of gene expression values (genes x cells). 
- sample_information
- A named vector of cell type labels (names match column names of expression_profile). 
- k
- Number of positive neighbors per anchor to form triplets (default: 5). 
- margin
- Margin between positive and negative pairs (default: 1.0). 
- learn_rate
- Learning rate for updates (default: 1e-4). 
- max_iter
- Number of optimization iterations (default: 100). 
- seed
- Random seed (default: 1). 
- verbose
- Logical; whether to print progress messages (default: TRUE).