Performs DCA metric learning for single-cell data. This is the original metric learning
method used in scLearn, implementing the algorithm from the dml package.
     
    
    Usage
    runDCA(
  high_varGenes,
  expression_profile,
  sample_information,
  strength = 0.1,
  seed = 1,
  verbose = TRUE
)
 
    
    Arguments
- high_varGenes
- Character vector of high-variance genes 
- expression_profile
- Numeric matrix (genes x cells) 
- sample_information
- Named vector of cell type labels 
- strength
- Subsampling strength (default: 0.1) 
- seed
- Random seed (default: 1) 
- verbose
- Print progress messages (default: TRUE) 
 
    
    Value
    List containing:
- expression_profile_trans: Transformed matrix (genes x cells) 
- expression_profile_origin: Original matrix 
- trans_matrix: Learned transformation matrix 
- sample_information: Input cell labels