Skip to contents

A SingleCellExperiment object containing human pancreas single-cell RNA-seq data from Muraro et al. (2016). This dataset serves as the query dataset in the scLearn package for cell type annotation.

Usage

QueryCellData

Format

A SingleCellExperiment object with 19127 genes (rows) and 2122 cells (columns). The object contains:

counts

Raw count matrix

logcounts

Log-normalized expression values

colData

Cell metadata including:

  • cell_type1: Cell type annotations

  • other metadata fields...

References

Muraro, M. J., Dharmadhikari, G., Grün, D., Groen, N., Dielen, T., Jansen, E., ... & van Oudenaarden, A. (2016). A single-cell transcriptome atlas of the human pancreas. Cell systems, 3(4), 385-394.

Examples

library(SingleCellExperiment)
#> Loading required package: SummarizedExperiment
#> Loading required package: MatrixGenerics
#> Loading required package: matrixStats
#> 
#> Attaching package: ‘MatrixGenerics’
#> The following objects are masked from ‘package:matrixStats’:
#> 
#>     colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
#>     colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
#>     colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
#>     colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#>     colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
#>     colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
#>     colWeightedMeans, colWeightedMedians, colWeightedSds,
#>     colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
#>     rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
#>     rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
#>     rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
#>     rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
#>     rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
#>     rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
#>     rowWeightedSds, rowWeightedVars
#> Loading required package: GenomicRanges
#> Loading required package: stats4
#> Loading required package: BiocGenerics
#> 
#> Attaching package: ‘BiocGenerics’
#> The following objects are masked from ‘package:stats’:
#> 
#>     IQR, mad, sd, var, xtabs
#> The following objects are masked from ‘package:base’:
#> 
#>     Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
#>     as.data.frame, basename, cbind, colnames, dirname, do.call,
#>     duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
#>     lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
#>     pmin.int, rank, rbind, rownames, sapply, saveRDS, setdiff, table,
#>     tapply, union, unique, unsplit, which.max, which.min
#> Loading required package: S4Vectors
#> 
#> Attaching package: ‘S4Vectors’
#> The following object is masked from ‘package:utils’:
#> 
#>     findMatches
#> The following objects are masked from ‘package:base’:
#> 
#>     I, expand.grid, unname
#> Loading required package: IRanges
#> Loading required package: GenomeInfoDb
#> Loading required package: Biobase
#> Welcome to Bioconductor
#> 
#>     Vignettes contain introductory material; view with
#>     'browseVignettes()'. To cite Bioconductor, see
#>     'citation("Biobase")', and for packages 'citation("pkgname")'.
#> 
#> Attaching package: ‘Biobase’
#> The following object is masked from ‘package:MatrixGenerics’:
#> 
#>     rowMedians
#> The following objects are masked from ‘package:matrixStats’:
#> 
#>     anyMissing, rowMedians
data(QueryCellData)
# Access expression matrix
assay(QueryCellData, "logcounts")[1:5,1:5]
#>                 D31.6_62 D30.4_62 D28.4_85 D28.2_87 D30.5_79
#> A1BG-AS1__chr19        0        0 0.000000 0.000000        0
#> A1BG__chr19            0        0 0.000000 0.000000        0
#> A1CF__chr10            0        0 1.588734 2.822002        0
#> A2M-AS1__chr12         0        0 0.000000 0.000000        0
#> A2ML1__chr12           0        0 1.001412 0.000000        0
# Access cell metadata
head(colData(QueryCellData))
#> DataFrame with 6 rows and 3 columns
#>           cell_type1       donor       batch
#>          <character> <character> <character>
#> D31.6_62      acinar         D31           6
#> D30.4_62      acinar         D30           4
#> D28.4_85      acinar         D28           4
#> D28.2_87      acinar         D28           2
#> D30.5_79      acinar         D30           5
#> D28.2_42      acinar         D28           2